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Abstrad. A new phase-shift multiple-scattering approach to the study of the main features 
of an electron trapped in hydrogenic-like states at solid surfaces (image-induced surface 
states)is presented. The basicpropertiesofthese Statesare discussed by meansoftheGreen 
function obtained within the semiclassical path integral method. The Bohr-like quantization 
condition for the existence of bound surface states was obtained explicitly as poles of the 
constructed Green function, while the image-induced surface resonances are discussed via 
the local density of states. Simple calculations of the surface-states binding energy and the 
local density of states for low-index faces of Al. Au and Cu are also presented. 

1. Introduction 

In electronic surface physics, fundamental understanding of the clean surface electronic 
structure is a subject of significant current interest owing to the variety of surface 
processes that it governs. Within the last decade, owing to the evolution of precise high- 
resolution angle-resolved photoemission (ARP) [l-31, inverse photoemission (IPS) [& 
61 and two-photon photoemission experiments [7], the characterization of electronic 
surface states existing on nominally clean surfaces has been drastically changed. Apart 
from the well known intrinsic (Shockley or crystal-induced) surface states, the real, long- 
range (image) potential outside the solid surface creates a hydrogen-like quantum well 
in which an electron can be trapped in one of n-numbered Rydberg-like states [S, 9). 
These states, usually called image-induced surface states, are properly described by first- 
principles calculations [IO] as well as being reasonably well predicted within the simple 
phase-shift multiple-reflection theory. This approach, originally developed by Ech- 
enique and Pendry [U-131, has been successfully applied by Smith [6,14-161, Dose [5,  
171 and Borstel andThorner [MI, amongothers, to predict and characterize the uniform 
picture of the crystal-induced and barrier- (image-) induced surface electronic states in 
metals. Recently, by constructing the Green function for a quantum well, we have 
demonstrated for the first time [19] the ability of the extended phase-shift multiple- 
reflection theory tocalculate the localsurface density of states for image-induced surface 
resonances measured in an Ips experiment [2&23]. A question we address in this paper 
is to what extent the construction of the Green function (or propagator) for the surface 
quantum well can change the conventional phase-shift accumulation theory of Ech- 
enique and Pendry. The motivation for asking this question is twofold. There may be a 
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Figure 1. Schematic representation 01 the 
expected image-like potential barrier (fullcurve) 
compared with the cut-off image potential model 
(broken curve). The flat potential region for the 
cut-offbarrier extends up toz; (adjustableimage 
plane) while for the smooth potential barrier 
model (ze - zc) can be infinitesimally small. The 
appropriate parameters V,. EI .  zi and V ,  are 
shown. 

conceptual advantage to the Echenique and Pendry point of view. On the other hand, 
there is a practical matter involved in the approach presented here. 

The outline of this paper is as follows. In section 3 we present a formal derivation of 
the fundamental equations. The multiple scattering of the electron is regarded as being 
made up of a sum over paths of the electron undergoing individual scattering from the 
separate crystal and surface potentials. Our previous paper [19] outlines the derivation 
of the local density of states (LDOS) limited to the space between the scatterings where 
the electron propagates in a way that is independent of these separate potentials. The 
careful WKB-like (Wentzel-Kramers-Brillouin) analysis performed here provides the 
Green function determined in any point of the space outside the crystal, i.e. one can 
calculate the LDOS in the region where the influence of the image potential barrier on the 
image-induced electron surface states is the most significant. As before, the individual 
scattering events are completely defined by the magnitude and phase-shift of the surface 
barrier and crystal reflectances. Furthermore, path integral analysis leads to the new, 
general formula for the image potential phase change qB, which to our knowledge 
has never appeared in the literature before. Finally, for comparison with the simple 
quantum-mechanical systems, the 'jellium' case is discussed in brief. 

Section 4 contains results of numerical calculations. All of them verify directly the 
usefulness of the phase-shift multiple-scattering Green function method presented in 
this paper. Namely, the analysesof delocalized states (Al(11 l)), image-inducedsurface 
resonances (Au( l l1) )  and image-induced bound surface .stales (Cu(00 1)) are pre- 
sented via the LDOS calculations. We want to point out that only the last case can be 
discussed properly within the simple phase model [15]. All calculations have been 
performed using the Jones, Jennings and Jepsen [24. 251 analytical model for the 
smooth image potential barrier (figure 1, full curve). For completeness, the phase-shift 
accumulation theory of Echenique and Pendry will be reviewed below. 

2. Background 

A crystal is arbitrarily terminated at some plane zc (figure 1) on which the potential is 
the same as in the bulk 

v&) = VC&) + ivc, (1) 

where V,, is a small finite imaginary part accounting for inelastic events. 
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Outside the adjustable image plane z;  the potential is assumed to have an image 
form, i.e. we will analyse in thissection the cut-off image barrier model (figure 1, broken 
curve) 

VB(Z) = vu - [2(2 - Z J - '  (2) 
(Rydberg atomic units are used throughout) where zi and Vo denote the image plane 
andthevacuumlevel, respectively; Im VB(z)  = Oforsimplicityand VB(z,  E )  = V B ( f ,  E ) ,  
i.e. the corrugation effects are negligible. For z smaller than the r-dependent surface 
potential is approximated by a constant value V = VB(zg). 

The conventional Echenique and Pendry approach [l l]  considers the surface states 
as electron waves trapped between the band-gap region and the surface barrier. In its 
elementary form [6,11, 141 if Rc = rc e'@c and Re = rB ei@B represent the respective 
reflection amplitudes of waves reflected from these barriers, bound surface states exist 
if 

rc = rB = 1 

GC + q5B + 2/42:, - zc) = 2nn 

( 3 4  

(36) 

and 

n = 0 ,1 ,2 , .  . . 
where QB and QC are the energy-dependent phase changes evaluated at 2; and zc 
respectively, and k is the perpendicular momentum of the electron wave 

(4) k = [(E - V )  - k2 11'2 I l l  ' 

The index n in equation (36) denotes the number of extrema in the surface-states 
wavefunction beyond the outermost atomic layer [8.26]. At l= ( i l l  = 0). n = 0 solutions 
designate usual crystal-induced (intrinsic or Shockley) states and n = 1,2, . . . solutions 
constitute the Rydberg series of the image surface states converging to vacuum level Vo. 

The Bohr-like quantization condition (36) requires both the absence of damping 
processes (Im Vc = 0), and that the energies E are in a relative bulk band gap (rc = 1) 
as well as below the vacuum level ( re  = 1). If E extends outside these ranges or inelastic 
processes are taken into account, the stationary condition (3) must be replaced by the 
weaker one [18] 

11 - rcrB exp{i[& + q 5 ~  + 2k(rE - zc)])12 -+ min. (5 )  
The phase changes q5B(c) produced by any general potential barrier can be obtained 

by matching both the convergent solution of the Schrodinger equation " ( 2 )  and its 
derivative Y'(z) outside and inside the barrier [13, 271 

$J = Ztan-'[Y'(zo)/kY(zo)] (6)  
where zu is the coordinate at the boundary barrier and k is defined by equation (4). 

The phase-shift q5c imposed in the scattering process on the crystal surface is usually 
calculated in the simple nearly-free-electron (NFE) approximation [8,9,17,18] (section 
4.1). In more realistic models the low-energy electron diffraction (LEED) calculation 
scheme isused todescribe thescattering at thecrystal potential [28,29]. Suchcalculations 
yield both rc and q5c as functions of energy (Im Vc(r) # 0), so that the non-stationary 
condition (equation (5)) should be taken into account [U, 281. 

Thephase-shiftq5Boccumngonthevacuumsideofthesurfacequantum welldepends 
on the detailed model of the surface potential barrier [24,25,28]. Although the long- 
range part of this barrier is purely electrostatic in nature and decays as $2 into 



5528 M Radny 

the vacuum (equation (Z)), eB should be calculated by numerical integration of the 
Schrodinger equation along the z axis [15, 16, 281. However, for the ad hoc image 
potential term introduced into the wave equation (cut-off-image potential-see 
equation (2) and figure l), an analytical formula for &, can he obtained 

k tan(@,) = -(d/dz)On[W~i~,~(~)lll~=~~ (7) 
where W,b,,(y) denotes the Whittaker function, i.e. the convergent solution of the 
Schrodinger equation inside the barrier; a = (Vu - E)':', y = ( z i  - .)/a and y o  = 

A useful approximation for qB was presented by Wannier (301, who approximated 
(2; - z d a .  

the Whittaker solutions by Bessel functions 

where Jut,, and YWl, are the Bessel functions, yo = ( 4 ~ ~ ) ' ~ .  k is given by (4) and (Y is 
related to the energy as in equation (7). This approximation is designed to he good at 
energies far above the cut-off level [13,26,31]. 

The simplest expression for the phase change QB at the image barrier, namely 
+, = {[3.4 eV/(V, - E)]''~ - 1)n (9) 

was obtained within the semiclassical approximation by McRae and Kane [32]. 
Within the last few years, a large experimental database (clean surfaces) has been 

interpreted with the use of the phase accumulation model. Although thismodel accounts 
successfully for thesystematicsofboundimagesurfacestates,itfailsin thecaseofimage- 
induced surface resonances [15,231. On the other hand, the same simple phase model 
has been found to  work well in the case of 0 and Na chemisorbed on low-index copper 
faces [16,33]. 

3. Analysis 

The path-integral-inspired semiclassical method has given a new approach to the con- 
struction of the Green function and thus the approximate quantum-mechanical 
description of simple quantum systems [34]. The usefulness of this method [35] has been 
proved by a detailed investigation ofthe single quantum well including both discrete and 
continuumstates[36,37]. Recently,wehavepresentedsimplecalculationsperformed by 
means of this method considering the effect of the image potential barrier on the local 
density of states at metal surfaces [19]. Of interest here is to generalize the previously 
obtained results by a careful study of the Green function for any smooth image-like 
potential outside the crystal surface (figure 1, full curve). For the quantitative analysis 
performed in section 4, we adopt the analytical barrier model proposed by Jones, 
Jennings and Jepsen (a~) [24.25]. 

3.1. Green function for surface quanhtm well 

In general, the fixed energy Green function in the position representation for a one- 
eIectron Hamiltonian H is 

G ( z , , z , , L , ~  = O ; E )  =i (z ,~ (E-H) - '~z2 ) /Zn  (10) 
for zI, z2 inside the well (figure l), and H = T + V,, where Tis  the kinetic energy and 
Vs the potential energy operator of the system. 



Multiple-scattering Green function theory for surface states 5529 

Theideaisthat the propagator (l0)can beexpressedasasumoverpathsthatconnect 
the points z1  and z2 [34,36] 

G(z,, z 2 ,  Ell = 0; E )  = I ( ~ / ~ ~ ) [ K ( z , ) K ( z ~ ) I - ” * }  X rIfm (11) 
p a r k  

where K ( z )  is the local wavenumber defined by 

Here V = VB(zB) in equation (IZa) and V B ( z )  in (12b) represents any smooth image-like 
potential outside the infinitesimally flat potential region (2, - zc) (figure 1, full curve). 

The sum in equation (11) is over all topologically distinct paths between z I  and z2 
inside the well, whilef, are the amplitude phase factors associated with the segments of 
each path 

f,,, = exp (i 1‘’ K(r )  dz) . (13) 
2, 

Let us imagine the particle wave incident on the wells inside the surface quantum 
wellwithenergyvi E <  V,.Forthepointszl,z2wherezc<zl < z,<m,wehavetwo 
classical turning points, namely 

(i) on the crystal-vacuum interface at z = zc, and 
(ii) on a finite surface barrier at z = b defined by VB(b) = E. 

The reflectance of the electron wave from the boundary that we fixed to be our 
coordinate origin (zc) is Rc = rc ei@c. Consider now the case of reflection of the electron 
wave from the surface barrier. Let us assume that the condition on the total reflectivity 
is fulfilled (rB = 1). In the region z > zB to the turning point b (VB(b) = E ) ,  the phase 
of the reflected wave is accumulated from the segments of each path according to 
equation (13). For the points z, ,  z2,  which are in region I1 in figure 1, we need the 
propagator G(zl, z2,  i l l =  0; E )  where 

z i , z z < b  (14) 

and the different paths by which travel from zI to z2 can be characterized as follows: 

(i) Propagate along the direct path from z I  to z2 (n = 0); propagate from z l  to the 
turning point b, then to the turning point zc, and back to z2 ( n  = 1). etc. Summing up 
all the possible ways without leaving the well one can easily obtain the whole amplitude 
in this case, namely 

exp(i  I-’k(  

(ii) Propagate from z1 to the turning point zc, then back to z2 (n  = 0); propagate 
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from z1 to the turning point zC, then to the turning point 6 ,  then again to turning point 
zC, and then back to z2 ( n  = l),  etc. In this case 

(Rcr,)" exp [2ni ( k ( z ,  - zc) + Ib k ( z )  d r ) ] } .  (15b) 
I8 

(iii) Propagate from zI to the turning point zc, next to the turning point b ,  and then 
back to z2 (n  = 0), etc. Then 

Rcr, exp[i2k(zB - zc)] exp (2i I b  k ( z )  dz) exp ( i  jz:' k(z )  d:) 
2 8  

b 

(RCrB)" exp k(zB  - Z C )  + I k ( z ) d z ) ] ) .  
26 

(iv) Propagate from z I to the turning point b and then back to z2 ( n  = 0); propagate 
from z 1  to the turning point b ,  then to the turning point zC, then to the turning point 6 ,  
and then back to z2 ( n  = l),  etc. Then 

(RCr$ exp k(zB - zc) + I b  k ( z ) d z ) ] } .  
zk? 

Now, according to equation (11) the semiclassical approximation to the full propa- 
gator is given by the sum over all paths (15u-d). and 

G(r , ,  z 2 ,  E,, = 0; E)  = {(i/Za)[k(zI)k(z?)]-1'2} {exp (i I z 2 k ( z )  dz)  
It 

(R, elT + r, 

where 
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The above procedure can easily be extended to the case where both the points z , ,  z2 
are in region I,  i.e. zc < z I  < t2  < z,, and the result is 

G ( z l , r 2 , E ~ ~  = O ; E )  = [ i / (~xk)]  

(Rc eiw + rB elW) 

2k(zB - zc)  + 2 1' k(r )  dz)] exp[ik(z, - r2)]] 
I B  

k(re - zc) + I b  k ( z )  dz)]]-' 
2 8  

where 

W = k [ z ,  + z2  - (zB + rc)] - 1 k(z )  d r .  (17b) 
IB 

In all equations (15a-d), (16~1,  b) and (17a, b),  k and k ( z )  are defined by relations (4), 
(12a) and (12b) for region I and I1 in figure 1, respectively. The parameter Rc denotes 
the reflectance from the crystal barrier and rB is the reflectivity from the surface barrier 
with the appropriate phase change that we want to find. 

3.2. Bound surface states and barrier phase change $, 

The electronic surface states localized at the metal surface represent the discrete energy 
spectrum. The Green function formalism allows one to determine this spectrum as the 
poles of the appropriate propagator G ( z l ,  22; E )  [38]. Thus, according to equations 
(16a, b )  and (17a, 6 )  the condition for the existence of the bound surface states is the 
following: 

1 - RcrB exp i 2/42, - zc)  + 2 k ( z )  d r  = 0. (18) [ (  [: )I 
For energies E in the bulk band gap below the vacuum level V,, (assuming that Im 
V C ( 4  = 0) 

lRcl = rc = /RBI = rB = 1 

$c + $B(E)  + 2k(rB - rc) = 2nn 

( 1 9 4  

(196) 

and equation (18) can be written in the form 

n = 0 , 1 , 2 , .  . . 
whereRcinequation (18) wasreplaced by rc e'@cand $,(E) inequation (196) isdefined 
as 

QB(E) = 2 J " k ( z )  d z  
ZB 

for k(z )  from equation (126) and b determined from 

V B ( b )  = E .  ( 1 9 4  
The Bohr-like quantization stationary condition (equation (196)) is the same as the 
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one derived by Echenique and Pendry in their 1978 paper [ll]. The only difference is 
due to the energy-dependent barrier phase change GB in equation (19~) .  

What energy dependence of GB can be expected? 
Following equations (2) and (l2b), i.e. taking into account thesimplecut-offsurface 

barrier model from figure 1 (broken curve), the analytical formula for GB can be written 
as 

G ~ ( E ) =  -+[(E- V ) I ~ / ~ ( V ,  - V ) ] +  [2(vU tan-l{[(E- v)/(v, -E ' ) ] }  (20) 

where, because of (19d) and VB(rg)  = V the parameters b and 2 5  in the integral (19c) 
were written in the form 

b =zi 9 [2(V,  - E ) ] +  (214 
2 ;  = 2, + [2(VU - V ) ] - ' .  (21b) 

Note that, as the energy approaches the vacuum level Vu, the variation of QB (equation 
(20)) becomes infinitely rapid and according to equation (196) the Rydberg series of 
image states is generated. We want to point out that such energy dependence of QB is 
characteristic for any image-like surface potential barrier (section 2, equations (6)-(9) 
and section 4, figure 4). At the uottom of the continuum, where the wave incident on 
the surface has zero energy, the surface potential barrier (independent of its shape) 
behaveslike aninfinite barrier. Hence, from equation (6) for asteppotential barrier we 
obtain GB = -n (E-  0) and finally 

b 

QB(E) = 2 k ( z )  d z  - x. (22) 
'B 

To our knowledge, formula (22) has never appeared in the literature before. Within the 
semiclassical approach, this expression is as general as the one obtained from the 
quantum-mechanical analysis (equation (6)). The quantitative aspect of this relation 
will be discussed in section 4. 

3.3. Local density of slates 

Excited electrons are subjected to inelastic electron-electron interactions, which results 
in decay processes, i.e. broadening of true (bound) surface states to resonances. The 
existence of the resonances is not associated with the singularity of the appropriate 
Green function. In this case a quantity of considerable physical interest is the density of 
states determined by the imaginary part of the propagator. For = z ,  = z2  the local 
density of states (LDOS) is defined as [38] 

ni,,=u(z, E )  = -Im[(zl(E - H)- ' l z ) ] /n .  

Following equations (16), (17) and (19c) the expression for the LDOS in our system is 

n+(z; E)  = [1/2nzk(z)l[ 1 - (rBrc)2 + rc(l - r~g) 

(23) 
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+ rB(l - r ; )  cos 
2 6  

for zc < z < zB in region I (figure 1). 

(24) (k (z )  = const) and in this form was presented in our previous work [19]. 

3.4. Jellium case 

The solution of the Schrodinger equation in the free-electron model of solid surfaces 
(simple metals) is given by the combination of the plane waves inside the bulk which 
matches onto the solution in vacuum and the surface region. The local density of states 
in this case is simplified to [39] 

We want to point out that equation (25) appears to be a special case of expression 

n(2; E )  = ( I / Z k ) { l  + COS[2kZ - K(E)]} (26) 
where k =  Eliz. The function K ( E )  is the phase-shift, i.e. the incident wave 
exp(i&ql) exp(-ik,z) from the bulk is reflected by the surface with a phase-shift 2 ~ .  For 
the image potential (figure l), K = @,, where QB is given by equations (6)-(9), (20) or 

In the phase-shift Green function approach presented here, the 'jellium' case could 
(22). 

be obtained by putting rc = 0 in equations (24) and (25). so that 

nkllno(z;E) = ( 1 / 2 ~ ~ k ) { I  + r,cos[2k(z - zB) - @,I} (27) 

for z < z,, and 

n + , ( z ; E )  = [1/2dk(z)] [ I  +r,cos(@, - 2 1 '  k(z ' )dz ' ) ]  (28) 
I 6  

for z > L,, where k and k(z )  are given by equation (12). 
Equations (26) and (27) are identical ( r ,  = 1). In both cases, the first term gives the 

bulk density of states, and the second the interference effects due to the surface. Since, 
in general, the image potential leads to barrier phase changes @ B ( E )  as in equation (9) 
(see also section 3.2, equation (20)), n(z; E )  oscillates as we move up to the vacuum 
level Vo (see section 4.3). 

The local density of states for the non-constant potential region (vacuum side in 
figure 1) is described here by equation (28). For k(z )  = const, equations (27) and (28) 
are the same, so the formula (27) as well as (17) and (25) represent exact solutions. 

3.5. Inelastic and diffraction effects 

Lifetimes of individual electrons have usually been connected with peak widths in the 
ARP and IPS spectra from solid surfaces [a, 411. Theoretically, in the one-electron 
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picture, the absorptioneffectscan bedescribed by meansofanopticalpotential(1m Vc # 
0) [42]. Namely, the one-electron Green function reads simply as 

G ( E )  = ( E  - T- Vs)-’ = ( E  - iVCi - T- Vc, - V&1. (29) 

Thus introduction of the imaginary component of Vc is equivalent to replacing E by 
E - i V ,  in thc Green function for undamped system (Vci = 0). This means that all the 
singularities representing a single-particle excitation are moved off the real energy axis 
into the complex energy plane by an amount Vci, with the corresponding broadening of 
the electron states, i.e. &functions become Lorentzian peaks with finite width at half- 
maximum. 

If we include the inelastic processes as an imaginary component iVci to E ,  the 
expression for c$c in~the multiple-scattering approach is 

exp[i&(E + i v ~ J l =  exp{i[@c(E) + iv~da@~/aE)]} (30) 

where a linear approximation to the complex energy dependence of the phase has been 
made [ll]. 

On the other hand, the diffraction effects reduce rc to less than unity even in the case 
of the absence of absorption caused by inelastic processes (Im Vc = 0). In the energy 
region outside the energy gap [29] 

rc = {[ikq(zc) + tp’(zc)]/[iktp(zc) - q’(zc)]} eFi2lrZc c 1 (31) 

where 1/‘ represents the crystal wavefunction and the prime marks differentiation. In 
this case the imaginary part of the crystal phase change is 

rCei@c = exp{i[qc + i In(rc)]}. (32) 

Incorporating both these processes as the imaginary component to the crystal phase 
change we can write [ll] 

rcexp[i@,(E + iVc,)] = exp{i[& + i In(rc) + iv,-,(~?q5~/JE)]}. (33) 

The usefulness of this relation in our discussion concerning the image-induced surface 
states will be presented in section 4. 

4. Numerical results 

The aim of this part of our paper is to explore what the local density of states (LDOS) 
analysis can tell us about changes in the surface electronic structure due to the surface 
barrier shape and crystal band structure. 

In general, the hydrogen-like image-induced surface states, if they exist, are pinned 
to the vacuum level V ,  (upper limit). As follows from the analysis in sections 3.2-3.4, 
the basic properties of these states should depend strongly on the value of the crystal 
reflectivity rc and, consequently, on the energy position of the vacuum level V ,  relevant 
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V0-& 11111 Figure 2. Schematic representation of the dis- 
persion relation E(k)  and energy variation of the 
crystal reflectivity r,(E) for the simple two-band 
nearly-free-electron model. The vacuum level 
position (VO) relevant to lhe band gap is sche- 
matically indicated for three different case-e 

-/a k 1 rcIEl the text. 

to the band gap. In figure 2 three especially interesting cases are indicated: Al(111) 
(delocalized states), Au(l11) (image-induced surface resonances) and Cu(00 1) 
(image-induced bound surface states). The quantitative analysis presented in sections 
4.3,4.4 and 4.5 has been performed with the use of the canonical formulae of the phase- 
shift Green function approach: (24) and (=), together with (27), (28) and (32). To 
use them the parameters (GC, rc) (section 4.1) and (&. re) (section 4.2) have to be 
determined. 

4.1.  Crystalphase changes 

WeareinterestedinthebulkLgapforthe(11 l)andthebulkXgapforthe(OOl)faces 
of the FCC crystal. The model potential we adopt in our calculations is of a real band 
structure to represent the solid side (Im Vc = 0). We consider the gap to be NFE-like 
opened by potential Fourier components V,corresponding to the lattice vectorg normal 
to the surface that we study (two-band model). The four parameters needed for calcu- 
lation, namely V,, E,, the Fermi level EF and the workfunction q, are represented in 
figure 1. V, is taken as half the width of the gap that we are considering and E, (=gz/8) 
is the energy difference between the centre of the gap and the crystal inner potential. 

According to (6)  and following Smith [14], Gc in the energy gap can be found 
(rc = I) ,  

k tan(GC/2) = (g/2) tan(rr/2 + 6) - q (34) 

where k is determined in equation (12a) and 6 denotes the phase of the wavefunction 
inside the crystal z < zc, 

sin(26) = -qg/2V, (35) 

q2 = -2(E + E,) + 2(4EE, + Vi). (36) 

and 

Outside the band gap QC = const while rc decreases rapidly (rc < 1, equation (31)). 
This situation is illustrated schematically in figure 2 for the simple two-band NFE model. 
Inside the energy gap r,  = 1 and @c(E) changes from 0 to x (equation (34) and curve 1 
in figure 4). 
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4.2. Surface barrier shape 

The barrier phase change q5B(E) (re = 1) was determined from equations (22) and (12b) 
for the analytical surface barrier model proposed by Jones, Jennings and Jepsen (JJJ) 
[24,25] as well as for the cut-off image potential (figure 1, broken curve, and equation 
(2)). 

(i) The surface barrier shape in the JJJ model is approximated by 

Vo - [2(z - z,)]-'{l - exp[-A(z - q)]} 
{A  exp[B(z - 2,) + 1]}-' 

z > zi 
z c zi. (37) v B ( z )  = 

It has an asymptotic form similar to the shifted image potential with a smooth transition 
to its bulk value U. (qdenotes the image plane and A is the characteristic distance over 
which the image potential saturated to the Fourier transform of the bulk potential). The 
values of these three adjustable parameters for different surfaces of AI, Ni, Cu, Au, . . . 
was determined in [25] by fitting the effective surface potenfial from fmt-principles self- 
consistent slab calculations to the model potential of equation (37). The parameterSA 
and B are fked by the requirement of smooth continuity at z = z, so B = Uo/A and 

(ii) Two arbitrary parameters in the cut-off model potential (figure 1, broken curve, 
and equation (2)) are the depth of the flat potential region Vand the image plane z ,  (or 
the distance between the image plane z, and the surface zc-the crystal terminates at 
half an interlayer spacing outside the topmost atomiclayer). Ingeneral the flat potential 
is matched into the inner potential modulated by the V, and the choice of V would 
be equally physically justified for any value in the range ?lVgl, Usually V =  
-lVzl = V,(z;) while z ,  is chosen in such a way that the Shockley surfacestate (crystal- 
induced; tt = 0 in equation (3) or (19b)) is reproduced in the band gap. For Al(111) 
V, = 0.0176J Ryd (lattice constant a = 7.655 au and V,, = 15.21 eV), so that z ,  = 1.2 au 
(see the next section, figures 3(b) and3). 

A = -1 + 2U,/A. 

4.3. AI(1 I I)-delocalized states 

The effect of the image potential barrier on the local density of states (LDOS) is evident 
in the calculations presented in figure 3(a) and performed for the 'jellium' model (rc  = 
0, section 3.4) and the J u  surface barrier. As can be seen from equations (27), (28), (9) 
and (20) the oscillations on each LDOS curve in figure 3(a) arise due to the barrier phase 
change @B. In figure 4 we present two qB(E) curves calculated for the cut-off image 
potential barrier (equation (2)) using two different expressions: the exact one given by 
equation (7) (curve 2) and relation (22) derived from the extended phase-shift method 
(curve3).Ascan beseen,thedifferencesarenotsignificantand~B(E)-'"forE~ Vo. 
The adjustable parameter for the cut-off image potential is the image plane and for z ,  = 
1.2 au theshockleysurfacestateisreproducedin the bdndgapfor bothcurvesZand3- 
dots in the inset in figure 4. 

For t h e m  barrier (37) with A = 1.0 au, V0 = 1.08 Ryd and z, = 2.95 au (parameters 
appropriate for Al(1 1 1) [Z] which were used for calculations presented in figures 3(a), 
(b)), the &,(E) dependence represented by curve 4 in figure 4 is qualitatively the same 
as for the cut-off surface barrier. The appreciable quantitative differences between 
curves 2 (3) and 4 reflect the fact that &, changes less rapidly for smooth potential 
barriers. 
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.-,(.:E) Al(1 11) - Jellivm 

S.0 5,O 7.0 

Figure 3. Al(1 I 1). The local density ofstates n&"(z; E )  calculated for z = 0.05,1.0,2.0. 
3.0.4.0, 5.0, 6.0, 7.0 and 8.0 au and the 111 barrier model: (a )  re(€) = 0, jellium case; (b) 
r,(€) # O(equation(31)). Inside the bandgap,, = 0.97andthepeakdenotestheShockley 
(n = 0) surfacestate. 

5 ,  
Al(111) 
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.-. -5 
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Figure 4. Energy variation of the cut-off image potential phase-shift (-c&) as given by 
equations (7) ( C U N ~  2). and (20) (curve 3). Curve (4) corresponds to -eB calculated for the 
JII barrier from equation (22). In the inset the crystal phase change (&) in the band gap is 
presented (curve 1). Dots represent the graphical solution of the Bohr-like quantization 
condition for n = 0 (Shockley state). Paramelers appropriate forAl(1 1 1). 

Figure 3(6) shows the local density of states at the Al(111) surface when the proper 
rc(E) (#O) dependence (31) is taken into account. It is interesting to see how the energy 
band structure of AI is created with a sharp peak in the band gap. This peak represents 
the Shockley (crystal-induced) surface state. It is related to a dot on curve 4 in the inset 
in figure 4, where graphical solutions of the Bohr-like quantization condition (196) for 
n = 0 are presented. We want to point out the adequacy of the JJI barrier parameters for 
thecrystal surface states calculation, i.e. in contrast to the cut-off potential the Shockley 
surface state is reproduced here without any adjustable parameters. Outside the gap we 
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ENERGY (ev) 

Figures. Au(l 1 1). The local density of states nk,&;€)  calculated at i = 0.01, 0.5, 1.0, 
1.5.20.2.5,3.0and 3.5 au. The arrow at -0.29 eV below the vacuum level V o  indicates the 
image-induced resonant state. 

again see that n X , = , ( i ;  E )  oscillates in the same way as in the 'jellium' model in figure 
3(a). We conclude that the value of r,(E) just below the vacuum level (-lo-* in this 
case) acts as a relatively weak perturbation in equations (21) and (25), so that the LDOS 
picture in figure 3(a) as well as figure 3(6) represents the density of delocalized states. 
Other investigations confirm this result [43-45]. On the other hand, however, the 
experimental observation of the image-induced surface resonant state at AI(111) has 
been reported in the literature [21]. 

4.4. Au(1 I 1)-image-induced surface resonances 

The LDOS analysis for Au(l11)  has been performed for the JJJ  barrier model (A = 
1.25 au, V ,  = 0.9609 Ryd, 2, = 2.41 au) [25] and the two-band NFE approximation (V, = 
0.169 Ryd, a = 7.72 au, V ,  = 0.7915 Ryd) [23]. The results of the calculations are pre- 
sented in figure5. An important and interesting difference between the results in figures 
3(a, 6) for AI and figure 5 is that one can see how different LDOS build up the image- 
induced resonant state outside the band gap at -0.29 eV below the vacuum level Vu. 
It is clear from equation (24) and the analysis in section 3.4 that such oscillations in 
n k Z O ( z ;  E )  as shown in figure 5 are caused by the interference between the incident 
and partially reflected ( rc  - lo-') waves inside the surface quantumwell. 

It is also interesting to compare the position of the image resonant state roughly 
estimated above to the results obtained from the simple phase accumulation model: 
-0.85 below Vo[23]. Sincethemeasuredvalueofthisenergypositionis -0.42eVbelow 
V ,  the authors conclude (see also [15]) that the elementary phase model (equation ( 5 ) )  
is not applicable for the image-induced resonant states analysis. It looks like the phase- 
shift Green function approach offers a qualitatively new result. 

4.5. Cu(00 I)-image-induced bound surface states 

Now we move on to the energy band gap where the crystal reflectivity rc = 1 (figure 2 
and equation (31)) and instead of the relation (24) for LDOS the Bohr-like quantizalion 
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Figure 6. Cu(00 1). The local density of slates ni,&: E )  calculated in the energy gap for 
rc=0.98 ,~=0.4auandtwosetsof~JJparameters:  ( I ) ? . =  1.15au. V,,= 1.12Ryd. z ,= 
2.40 au: (2) A = 1.05 au. V o  = 0.R5 Ryd, zm = 2.35 au. The bound image surface States are 
denoted n = 1.2.3. . . . . 

condition (equations (36) and (196)) should be used. In general, however, when the 
electron encounters a bandgap instead of an infinite barrier, its wavefunction penetrates 
into the crystal. The overlap of the image state wavefunction with the crystal tells us how 
much effects associated with elastic and inelastic scattering inside the crystal affect the 
electron in the image state. Therefore. these effects are important in determining the 
lifetime of this state. According to equations (30)-(33) we can make these ideas a little 
more quantitative but still remain within a simple intuitive approach. Namely, as was 
pointed out in section 3.5, the imaginary part of eC takes its origin from the optical 
potential (Im Vc # 0) and/or diffraction effects (rc < 1). Formally, each of these terms 
can be replaced by the other, giving qualitatively the same effect, i.e. the &function 
(bound state) becomes the Lorentzian peak (resonance). The effects of this simulation 
(rc = 0.97) with the use of equations (22) and (24) are presented in figure 6 for Cu(00 1) 
(two-band model: V, = 0.2216 Ryd, Vu = 0.8474 Ryd, a = 6.824 au). Because the 
determination of the surface barrier shape is not unique [15,25], the calculations have 
been performed for two sets of JJJ barrier parameters [25]: 2. = 1.15 au, V ,  = 1.12 Ryd, 
zi = 2,40au(fullcurveinfigure6),andA = 1.05 au, Vu = 0.85 Ryd,z, = 2.35 au(broken 
curve). Peaks on each curve represent the image-induced bound surface states, which 
create the Rydberg-like series of image states. These results also show the sensitivity 
of the expression (22) to the more or less smooth surface barrier model chosen for 
calculations. 

5. Summary 

In this paper we havegivenageneralviewpoint andhaveexamined thegeneral properties 
of the new phase-shift multiple-scattering Green function approach for the calculation 
of surface electronic states. 
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The simple criterion for bound surface state energy (known from the Echenique and 
Pendry theory)-equations (3) and (19b)-as well as the analytical formula for the 
local density of s ta tesequat ions (24) and (25)-have canonical form, i.e. detailed 
information on the surface potential barrier and the crystal have been summarized in 
the (GB, rB) and (&, rt) parameters, respectively. In other words, one need not repeat 
the whole calculations presented in section 3. All that is necessary is to modify the 
calculations of (#*, rB) and (QC, rC) according to the chosen model for the surface 
potential barrier and the crystal band structure. 

We have also shown the usefulness of the new WKB-like formula for determining the 
barrier phase change &. Because of the extreme simplicity of this expression, we 
recommend further investigations within this context for any smooth image-like poten- 
tial barriers. 

Finally, we want to recommend the extended phase-shift multiple-scattering Green 
function theory presented here as a powerful method suitable for treating the electronic 
surface states,overlayerstates, lifetime effects, density ofstates, tunnelling phenomena, 
etc, in simple qualitative as well as advanced quantitative theoretical electronic surface 
structure calculations. 
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